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Abstract

It is presented an introduction to the basic concepts in topology. Em-
phasis is put on homotopy theory. A topological invariant of compact
manifolds, the winding number, is defined.
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1 Definitions

A set X together with a set 7 = {U;|i € I} of subsets U; of X (T 5 U; C X =
UicrU;) is a topological space iff T contains: () the null set and X (0, X € T),
(i) the union of any of its subsets (UjcsU; € T, for any subcollection J of I),
(741) the intersection of every of its finite subsystems (Ngex Ui € T, for every
finite subcollection K of I).

The sets U; € T are called open sets. A set A C X whose complement in
X is open is called a closed set, i.e. (X
A) €T.

A map f : X — Y between two topological spaces X and Y is called
continuous iff the inverse image of every open set in Y is an open set in X,
i.e. for every U € Ty, f1(U) € Tx.

A homeomorphism is a bijection which is bicontinuous (f is continuous
and has an inverse f~! which is also continuous). Two topological spaces are
said homeomorphic if there is an homeomorphism between them.

map f: X — Y between two topological spaces X and YV

A neighborhood N of a point z in X is a set N, containing an open set
which contains the point . Then, a subset A C X is open iff it contains a
neighborhood of each of its points.

A topological space is called a Hausdorff space iff any two points in X have
disjoint neighborhoods.

A system {A4;} of [open] subsets of X is a [open] covering of X iff UA; = X.

A topological space X is connected iff it cannot be written as the union
X = X; + X, of two open disjoint X; N X, =  sets.

A topological space X is arcwise connected iff given two points in X there
is a continuous path between them. X is locally arcwise connected if for
each point z € X and each neighborhood V,, there is a neighborhood U, C V,
which is arcwise connected.

A loop in a topological space X is a continuous map f : [0,1] — X such that
F(0) = f(1). A topological space X is called simply connected iff any loop in
X can be continuously shrunk to a point. !

2 Compactification

X is compact iff every open covering of X has a finite subcovering. A set A C X
is compact iff it is Hausdorff and every covering of A has a finite subcovering.
It is locally compact iff every point has a compact neighborhood.

Consider a locally compact Hausdorff space X, and let X+ = X U {2} where
z is not an element of X. Let Tx+ contain Ty, the complement in X+ of
all compact subsets of X, and X+. X7 together with the topology Tx+ is a

lthe definition is made precise later in terms of fundamental homotopy groups
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compact topological space, X being a topological subspace of XT. X7 is called
the one-point compactification of X.

E.g., the one-point compactification of the non-compact space R™ to a com-
pact space S™ = R"™ U {00} may be achieved by mapping all points at infinity
to a point.

This procedure will be interesting as sometimes it is assumed that the field
approach some asymptotic form at spatial infinities, corresponding to the vac-
uum, or for that matter one of the vacua

3 Homotopy

Homotopy describes continuous deformations of maps one to another, between
two topological spaces X and Y. X is chosen as some standard topological
space whose structure is well known, as the n—sphere, S™. Homotopy groups
then describe how maps from S™ to Y are classified according to homotopic
equivalence.

3.1 Definition

A path in a topological space X is a continuous map « : [0,1] = X. A loop
at ¢ € X is a path a in X such that a(0) = (1) = z. A loop ¢; : [0,1] = X
such that s — x is called a constant path.

The product a * 8 of two paths a and 8 in X is defined as

axf(s) = «2s) 0<
= B2s-1) ;<

The inverse path a ! of a is the defined by a1 (s) = a(1 — s).

Two maps «, 8 : X — Y are said to be homotopic a ~ f if there exists a
continuous mapping F : X x[0,1] — Y such that F(s,0) = a(s), F(s,1) = (s).
Then F is called a homotopy between a and .

If X is arcwise connected and locally arcwise connected, it is simply con-
nected if every loop is homotopic to a constant map.

Homotopy between loops at a given base point defines an equivalence rela-
tion ' ~' . 2 The equivalence class of loops [a] to which a belongs is called the
homotopy class of a.

3.2 Fundamental groups

The fundamental group or first homotopy group 71 (X, zy) of a topological
space X at xg is the set of homotopy classes of loops at g € X. The group

2] .e., it satisfies: reflexivity, a ~ a; symmetry, a ~ § = 8 ~ a; transitivity, a ~ S A B ~
Y=o~y
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structure is given by the product of homotopy classes defined as [a]*[5] = [a*S],
using the product of loops defined above.

In case X is an arcwise connected topological space, w1 (X, zg) is isomorphic
to w1 (X, z1); therefore the base point may be omitted and can refer simply to
1 (X) .

An arcwise connected space is simply connected if it has a trivial fundamental
group, 71 (X) = {e}.

For arcwise connected topological spaces X and Y, there is the following
group isomorphism

(X XY, (20,90)) = m(X,z0)m1 & (Y,90)

A fundamental group is invariant under homeomorphisms and hence is a
topological invariant.

3.3 Higher homotopy groups

Besides the homotopy classes of loops in a topological space X, describing the
fundamental group, other groups may be assigned to X, e.g. by considering
homotopy classes of spheres or tori. The focus here is on the group of the
homotopy classes of the sphere S™.
Let I™ be the unit n-cube, I™ = { (s1,...,8,) | 0< 5, <1 (1<i<n)}
and denote its boundary by 0I" = { (s1,...,8,) € I"™ | some s; = 0or1}.
A n-loop at zo € X is a continuous map

a:I"— X

which maps the boundary 0I™ to the point zy. Shrinking the boundary if
I™ to a point forms the sphere S™, I™/0I™ ~ S™.

Two n-loops a,B : I — X at z¢ € X are said to be homotopic a ~ 3
if there exists a continuous mapping F : I — X such that F(sy,...,8,,0) =
a(s1y.--y8n), F(s1,.-.,8n,1) = B(s1,.--,8n), F(s1,...,8n,t) = xo for (s1,...,8,) €
oI™, t € I. F is called a homotopy between « and f.

Homotopy between n-loops at a given base point defines an equivalence re-
lation ' ~' . The equivalence class of n-loops [a] to which a belongs is called
the homotopy class of a.

The product a x 8 of two n-loops & and § in X is defined as

axB(s1,82,---,8,) = a(281,82,...,5,) 0<s <3
= ﬂ(231_17327"'75n) %5351
The inverse a1 of a is the defined by a1 (s1, 52, .., 8,) = a(1—s1, 82,...,5n).

The nth homotopy group (n > 1) m,(X,zg) of a topological space X at
zo is the set of homotopy classes of n-loops at g € X. The group structure is



Nuno T. Leonardo Topology 5

given by the product of homotopy classes defined as [a] * [8] = [« * (], induced
by the product of n-loops defined above.

In case X is an arcwise connected topological space, 7, (X, o) is isomorphic
to m, (X, z1); therefore the base point may be omited and can refer simply to
higher homotopy group as m,(X).

Higher homotopy groups (n > 1) are always Abelian,

[a] * [8] = [8] * [ (n=2)

For arcwise connected topological spaces X and Y, there is the following
group isomorphism

Wn(XXY) = 71'1(X) D 71'1(Y)

Higher homotopy groups are invariant under homeomorphisms and hence
are topological invariants.

For the case n = 0, mo(X) is the 0th homology group and denotes the number
of (arcwise) connected components of X.

3.4 Examples

Lie groups

m1(G) = Z G=UQ1)

Zy G =50(n) (n 2 3)

{e} other simple compact connected Lie group
m2(G) = {e} G any compact connected Lie group
m3(G) = VA G any simple compact connected Lie group
m4(QG) > 7y X 7y G =50(4), Spin(4)

Zy SU(2), SO(3), Spin(5), SO(5)

{e}  G=SU(n) (n2>3), SO(n) (n>6), G2, Fy, By,

Ton (SU(n)) = Zn

Spheres



Topology
T (S™) =  {e} forn<m
mn(S™) = Z
1 (S™) = Zo except
Tnta(S™) =2 Zy  except
Tny3(S™) = Zyy  except
mn(ST) ~ f{e} except
Torus
T? =St x St
1 (Tz) =

T =8t xS'x...x St
7T1(Tn)

1%

Other relations

mn(RP™) =

m1(SO(N))
m1(SO(2))
m(SO(3)) = ma(S?) =

Bott periodicity theorem

Fornzw,kzl

mSHem(SH)®...eom(SH) =

Tn(S™)

~

- 71'"+1(

m4(SU(2))
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m(S') = {e}, m3(S?) = Z
m3(S') = {e}
m4(S') = {e}, m5(S?) = Z»,
7T6(S3) = Z12, 7T7(S4) = ZXZ12
Wl(Sl) A
(torus)

mSY)eom(St) 2 ZeZ

(n — torus)
Z7®7®...

1

Z n>2

nn
3

):
VA
m4(SO(3)) = Z,

7T3(S2)

R 1R

me(U(n)) =2 m(SU(N)) = {e} k even
= Z k odd
Forn > (k+2), k> 2,
m(SO(n)) =2 Z k=3,7 (mod 8)
Zy k=0,1 (mod 8)
{e} k=2,4,5,6 (mod 8)

Coset spaces

®Z
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For any Lie group G and any Lie subgroup H C G, m2(G/H) is the subgroup
of w1 (H) that maps into the trivial element of 71 (G) when H is embedded in
G,

mo(G/H) = ker{m (H) —» m(G)}

A special case is

WQ(G/H):’IH(H) fOT 7T1(G):0

4 Topological invariants

A topological invariant is a property of topological spaces which is preserved
under a homeomorphism. Naturally then, if two topological spaces have different
topological invariants they cannot be homeomorphic to each other.

A topological invariant may be the number of connected components of a
space, connectedness, compactness, separation properties, such as the Hausdorff
property.

very useful and well-known topological example is the Euler character-
istic. Let X C R?, and K any polyhedron homeomorphic to X; the Euler
characteristic x(X) of X is given by

x(X) = (number of vertices in k) — (number of edges in k)
+ (number of faces in k)

This is a good definition as is ensured by the Poincaré-Alexander theorem
that x(X) is indeed independent of the polyhedron K homeomorphic to X
considered.

The homology groups 3are refinements in a sense of the Euler characteristic
concept.

Homeomorphism define an equivalence relation. Another equivalence rela-
tion, which is coarser and quite useful, is that of the same homotopy type, as
was seen previously (the condition that the continuous functions need to have
inverses is relaxed). To see the destinction note that for example the open
interval (0,1) and a point {0} are of the same homotopy type although not
homeomorphic.

5 The Cartan-Maurer integral invariant

Here it is introduced a topological invariant of compact manifolds which can be
written as an integral over the manifold.

3these are properly defined by introducing concepts such as simplexes, simplicial complexes,
triangulation of the space, chain and boundary groups, ...; also it is shown, via de Rham’s
theorem, to be the dual of the cohomology group
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Consider a mapping g : S — M from a compact manifold S of odd *
dimensionality d into a manifold M of matrices, with det g # 0. In particular,
take the d—sphere S = S? and the representation of some Lie group M = G,
respectively.

The Cartan-Maurer invariant is given by

F(4)) E/S d?9 ezt tr {g7(0) 3,9(6) 97 (6) 0ing9(0) ... g7 (6) Dia9(0)}

The integral in F is independent of the local coordinates used to parame-
terize the manifold S. °

Furthermore, it is shown that F is invariant under small deformations of
the map g, and therefore it is indeed a function F([g]) of the homotopy class
[9] of g. Actually, exp F([g]) provides a representation of the homotopy group
ma(M), as

Fllgl« (1) = F(gD) + F(fD

In particular,

F(lg]") = n F(9))

Thus, in case F([f]) # 0 for some [f], then {[f]"} form a subgroup Z of
Wd(M).

A simplest example is provided by 7 (S'), where a representative of the nth
class is given by the mapping g,(0) = expind (0 < 6 < 27), for which

F(lgn)) =/0 i df exp(—inB) 9y exp(inh) = i2wn

thus confirming m (S1) = Z.

Consider the case d = 3. It is shown that for any simple Lie group G, all
continuous mappings S® — G may be continuously deformed into mappings
of S% into a standard SU(2) subgroup of G. In the case of G = SU(n), this
standard subgroup is the one that acts on the first two components of its defining
representation.

6 Winding number

For the identity map g; : S° — SU(2), from S to the SU(2) subgroup of G,
and taking the standard representation and usual generators for the standard
L(SU(2)) subalgebra, it turns out

4

were it even, the cyclic property of the trace would render the correspondent definition
below trivial

5which follows from the transformation properties of the € tensor, essentially the Jacobian
of the performed change of coordinates
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F(lg1]) = 24n*
and therefore
F([g1]™) = 247%n,

The integer n, or

1
Wlg] == W}-([gl]n)

is called the winding number.

Accordingly, for every simple Lie group G, w3(G) contains Z. Actually,
m3(G) = Z for all simple Lie groups; i.e., the homotopy class [g] for any sim-
ple Lie group is entirely determined by the homotopy class when the group is
deformed into its standard SU(2) subgroup.



